Data Science for Biology Workshop Series
AWS Instance IPs
Installation
Datasets
Resources
Past Workshops
About
Hypothesis testing, data transformation, longitudinal displays
1. Reproducible Data Analysis with R
Module 0:
Welcome to the workshop
Module 1
: How data analysis is informed by data generation
Module 2
: Intro to R, Rstudio, and Quarto
Module 3
: Intro to data visualization and data wrangling with the
tidyverse
Module 4
: Data wrangling and more data visualization
Module 5
:
tableone
and its Basic Statistics
Module 6
: Data transformations and more statistics
Module 7
: Customizing data visualizations using
colorspace
,
ggplot2
, and
patchwork
Group Project
-Applying what you’ve learned to new data
2. Working with High Dimensional Data in R - The Human Microbiome
Module 0:
Welcome to the workshop
Module 1
: Sequencing Library Preparation
Module 2
: R Refresher
Module 3
: 16S Data Processing
Module 4
: Exploring High Dimensional Data
Module 5
: Correlations and Ordinations
Module 6
: Shotgun Metagenomics and VIRGO
Module 7
: Keynote
Group Activity:
Applying what you’ve learned to new data
3. Bioinformatics and Viral Genomics - February 22-28 2025
Module 0:
Welcome to the workshop
Module 1
: Preparing libraries for viromics
Module 2
: Intro to the Unix Shell
Module 3
:Intro to Bioinformatics I
Interactive 1
:Genomics Adventure
Module 4
: Read Mapping and Variant Calling
Module 5
:Targetted Viromics and Phylogenetics
Module 6
:Untargetted Viromics
Module 7
:Best Practices
Interactive 2
:Genomics Adventure
On this page
Slides
For Reference - Link to html output - please don’t use during the teahcing portion
Hypothesis testing, data transformation, longitudinal displays
Slides
Make slides full screen
Download the `.qmd` to do the exercise. Select all and copy into a .qmd file in RStudio
Corrected version of the Quarto document here
For Reference - Link to html output - please don’t use during the teahcing portion
Module 5
:
tableone
and its Basic Statistics
Module 7
: Customizing data visualizations using
colorspace
,
ggplot2
, and
patchwork