# Workshop III – Bioinformatics and Viral Genomics

### **Untargeted Viromics Session**

Durban, South Africa February 27, 2025 Luis Chica



### Outline

- Introductory Presentation
  - Virome Background
  - Uncultivated Viral Genomes (UViGs)
  - Key methodologies for identifying and analyzing UViGs
  - Bulk Metagenomics vs. Virus-Like Particle (VLP) Enrichment (Review)
  - Main Approaches for Viral Prediction
  - Pipelines for Analyzing the Virome
- Hands-On Session
- Hands-On Review

## Definitions and role of the virome

### Spanning eukaryotic viruses to bacteriophages





### Definitions and role of the virome

#### **Concept of bacteriophage lifecycles**



Ravieer et al., 2024

- Lysogenic phages can integrate to the bacterial genome and replicate as long as the bacteria replicates.
- Lysogenic phages = temperate phages.
- Prophages: Stage in which the phage is integrated in the genome.

e

### Uncultivated viruses (uViGs)

#### Drastic increase of the number of uViGs deposited in databases over the past years.



Roux et al., 2023

### Main techniques for analysing uncultivated viruses



Roux et al., 2023

## Bulk metagenomics vs VLP enrichment

Depending on the approach your viral results change



- Comprehensive Sampling: Allow us to relate the different microbial communities within the environment.
- More accurate identification of prophages and their host.
- Lower Viral Specificity: hard to detect lowabundance viruses.



- Complex Data Analysis
- Higher Background Noise: potentially mask of viral signals.



- Enhanced Viral Detection: More sensitive method for detecting viruses.
- Reduced Background Noise: Eliminates most non-viral genetic material.
- Possibility of detecting RNA viruses
- Misses prophages and latent viruses

• Complex and costly sample preparation.





#### COMPUTATIONAL TOOLS FOR PREDICTING VIRAL SEQUENCES



Machine learning Trainin ger

Comparing sequences using viral databases and local alignment **Pros**: High accuracy for known viruses. Allows distant homologous detection **Cons**: Dependent on the quality and completeness of reference databases. Slow

Dividing sequences into subsequences and comparing against DBs **Pros:** Fast and scalable. **Cons**: Detection is limiled to high identity relatives within databases

Training model with viral genomic features

Pros: Can detect novel viruses. High accuracy with well-trained models. Cons: computational intesnive

#### COMPUTATIONAL TOOLS FOR PREDICTING VIRAL SEQUENCES

Phylogenetic approaches Using phylogenetic defined references to located the query sequences

#### Hybrid

Normally, it combines machine learning and homology approaches Pros: Provides evolutionary context. Useful for novel virus discovery.
Cons: Computationally intensive. Requires high-quality alignments.

- k-mer analysis typically relies on reads as input.
- Homology-based approaches can use either reads or contigs as input.
- Machine learning and hybrid approaches usually require contigs as input, along with several genomic features for accurate prediction.
- Phylogenetic analysis can use contigs or specific genes extracted after assembly.



#### Homology based approaches



- Use of local alignments and Hidden Markov Models (HMMs) against specific viral databases for precise identification of viral sequences.
- Use of sliding windows to classify viral gene-rich regions and identify regions enriched in viral genes.

#### K-mer based approaches



Wood & Salzberg, 2014

- Use of k-mer frequency analysis to identify unique compositional patterns in viral sequences.
- Comparison of k-mer profiles against curated databases or reference genomes for viral classification.



### When to use homology or k-mers for read based analysis

#### How well-known is the system you are working on and data set size as key factors



#### Tool

- diamond
- kraken
- mmseqs

- An increase in mutations can significantly affect the performance of k-mer-based tools.
- This is particularly problematic for novel viruses or viruses without close representatives in the reference database, as they may be missed or misclassified.

### Complete workflows for viral analysis: Read and contig-based approaches

## Quality control for viral genomics

### Key step for avoiding false positives and reducing data sizes

• Macaque



- C. elegans

## Workflow for viral analysis using contigs

No gold standard available



- Optional steps:
  - Binning
  - Clustering

### Workflow for viral analysis using reads





## Hecatomb main output

#### **Bigtable**

|                                                                                                                         |                                                             |                                  | TD                     |        |                       |                    | 1 70   |                |             |               | · ·              |              |                  |                                         |                             | • •                  |       |       |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|------------------------|--------|-----------------------|--------------------|--------|----------------|-------------|---------------|------------------|--------------|------------------|-----------------------------------------|-----------------------------|----------------------|-------|-------|
|                                                                                                                         | seqID                                                       |                                  |                        |        | sampleID co           |                    |        |                |             | CPM C         | aLnTyp           | e targetIL   | )                |                                         | evalu                       | evalue pident fident |       |       |
| 1:                                                                                                                      | A13-256-115                                                 | 5-06_GTTT(                       | CG:8:66010             | A13-2  | 56-115                | 5-06_0             | GTTTCG | 8              | 6.72        | 270249        | а                | a A0A1L2BK65 | 5 0.000          | 000000000000000000000000000000000000000 | 0000000000329               | 3 6                  | 7.5   | 0.675 |
| 2:                                                                                                                      | A13-256-115                                                 | 5-06_GTTT(                       | CG:1:66034             | A13-25 | 56-115                | 5-06_0             | GTTTCG | 1              | 0.84        | 108781        | а                | a A0A1W5PXG9 | 9 0.00           | 000000000000000000000000000000000000000 | 0000000909400               | 0 70                 | 0.2   | 0.702 |
| 3:                                                                                                                      | A13-256-115-06_GTTTCG:1:66041                               |                                  |                        | A13-25 | A13-256-115-06_GTTTCG |                    |        |                | 0.8408781   |               | а                | a A0A345BQH3 | 3 0.000          | 0000000000140199                        | 99999999999983              | 5 59                 | 9.6   | 0.596 |
| 4:                                                                                                                      | 183-06-02-2                                                 | 183-06-02-24-12_GGCTAC:1:5285 18 |                        |        | 83-06-02-24-12_GGCTAC |                    |        |                | 1 2.1246354 |               | а                | a A0A345N1W4 | 1 0.000          | 000000000000000000000000000000000000000 | 0060110000000               | <b>0</b> 53          | 3.9   | 0.539 |
| 5:                                                                                                                      | 183-06-02-24-12_GGCTAC:4:5288 18                            |                                  |                        | 183-06 | 83-06-02-24-12_GGCTAC |                    |        |                | 8.4985414   |               | а                | a A0A345MXJ8 | 3 0.00           | 0000000002901999                        | 99999999999533 <sup>,</sup> | 4 58                 | 8.8   | 0.588 |
| 6:                                                                                                                      | 183-06-02-24-12_GGCTAC:6:5291 183-                          |                                  |                        | 183-06 | -06-02-24-12_GGCTAC   |                    |        |                | 12.7478122  |               | а                | a A0A1L2BL70 | 0.00             | 00000054869999999                       | 99999997670553              | 6 58                 | 8.0   | 0.580 |
|                                                                                                                         | nident mism                                                 | qstart                           | start qend qlen tstart |        |                       |                    | tlen   | alnlen         | bits        |               |                  | tar          | getName taxMe    | thod l                                  | kingd                       | om                   |       |       |
| 1:                                                                                                                      | 50                                                          | 24 0                             | .949 0.186             | 11     | 232                   | 234                | 257    | 330            | 398         | 222           | 118              |              |                  | A0A1L2BK65_9V                           | IRU VP4                     | LCA \                | Virus | es    |
| 2:                                                                                                                      | 52                                                          | 22 0                             | .949 0.247             | 11     | 232                   | 234                | 7      | 80             | 299         | 222           | 108              |              |                  |                                         | Сар                         | LCA \                | Virus | es    |
| 3:                                                                                                                      | 37                                                          | 20 0                             | .701 0.257             | 239    | 69                    | 244                | 164    | 225            | 241         | 186           | 73               | A0A345BQH3_  | _9VIRU           | Zonula occluden                         | s toxin                     | LCA \                | Virus | es    |
| 4:                                                                                                                      | 41                                                          | 35 0                             | .979 0.563             | 229    | 2                     | 233                | 43     | 118            | 135         | 228           | 94               | A0A345N1W4_9 | )<br>9<br>VIRU U | Uncharacterized                         | protein                     | LCA \                | Virus | es    |
| 5:                                                                                                                      | 30                                                          | 21 0                             | .654 0.073             | 233    | 81                    | 234                | 646    | 696            | 696         | 153           | 68               |              |                  | Major capsid                            | protein                     | LCA \                | Virus | es    |
| 6:                                                                                                                      | 29                                                          | 21 0                             | .600 0.362             | 245    | 96                    | 250                | 76     | 125            | 138         | 150           | 60               |              |                  | AØA1L2BL70_9V                           | IRU VP3                     | LCA \                | Virus | es    |
|                                                                                                                         |                                                             |                                  |                        | class  | 5                     |                    |        |                | order       |               | family           |              |                  |                                         |                             |                      |       |       |
| 1:                                                                                                                      |                                                             | ١                                | Malgrandaviricetes     |        |                       |                    |        | Petitvirales   |             |               |                  | Microviridae |                  |                                         |                             |                      |       |       |
| 2:                                                                                                                      | : Cressdnaviricota                                          |                                  |                        |        | Arfiviricetes         |                    |        |                |             | Cremevirales  |                  |              |                  | Smacoviridae                            |                             |                      |       |       |
| 3:                                                                                                                      | Hofneiviricota                                              |                                  |                        |        | Faserviricetes        |                    |        |                |             | Tubulavirales |                  |              |                  | Inoviridae                              |                             |                      |       |       |
| 4: unclassified Viruses phylum unclassified Viruses class unclassified <u>Viruses order unclassified Viruses family</u> |                                                             |                                  |                        |        |                       |                    |        |                |             |               |                  |              |                  |                                         |                             |                      |       |       |
| 5:                                                                                                                      | PhixviricotaMalarandaviricetes                              |                                  |                        |        |                       |                    |        |                |             | Pe            | etitvi           | rales        |                  | Microviridae                            |                             |                      |       |       |
| 6:                                                                                                                      |                                                             | Phixviricota                     |                        |        |                       | Malarandaviricetes |        |                |             |               | Petitvirales     |              |                  | Microviridae                            |                             |                      |       |       |
|                                                                                                                         | aenus                                                       |                                  |                        |        |                       |                    |        |                |             |               |                  |              |                  |                                         |                             |                      |       |       |
| 1:                                                                                                                      | : unclassified Microviridae genus unclassified Microviridae |                                  |                        |        |                       |                    |        |                |             | species       | ecies ssDNA      |              |                  | II                                      |                             |                      |       |       |
| 2:                                                                                                                      | Porprismacovirus <u>Macaca mulatta feces associated v</u>   |                                  |                        |        |                       |                    |        |                |             | virus 1       | L                | ssDNA        |                  | II                                      |                             |                      |       |       |
| 3:                                                                                                                      | unclassified Inoviridae genus                               |                                  |                        |        |                       |                    |        | Inoviridae sp. |             |               |                  | ssDNA        |                  | II                                      |                             |                      |       |       |
| 4:                                                                                                                      | 4: unclassified Viruses genus                               |                                  |                        |        | Bacteriophe           |                    |        |                |             | nage sp.      | ae sp. <na></na> |              |                  | <na></na>                               |                             |                      |       |       |
| 5:                                                                                                                      | 5: unclassified Microviridae genus                          |                                  |                        |        | Microviridae s        |                    |        |                |             |               |                  | ssDNA        |                  | II                                      |                             |                      |       |       |
| 6:                                                                                                                      | 6: unclassified Microviridae genus                          |                                  |                        |        |                       |                    | Gokı   | ushovi         | .rus V      | VZ-2015c      | 2                | ssDNA        |                  | II                                      |                             |                      |       |       |

- Main output of taxonomic assignment
- It combines the seqtable IDs with their sampleID, counts, normalized counts, alignment information, taxonomic assignments and Baltimore classification.
- It is a big file, but is designed to make merging with sample metadata, plotting, and statistical interrogation as easy as possible.





### Summary

- Sequencing Methodology:
  - scope of the project.

#### • Viral Detection:

- Combining complementary approaches enhances robustness.

#### **Tool Selection:**

- For read-based analysis, tool selection should consider the novelty of the system.
- novel systems.

• The choice of sequencing approach (e.g., bulk metagenomics, VLP enrichment) depends on the main

• Different methodologies impact the detection of specific viruses and the estimation of viral abundance.

• Viral detection should be performed carefully, applying multiple tools to increase confidence in predictions.

k-mer-based approaches may have limitations in understudied systems due to the lack of reference data.

• Homology-based approaches are time- and resource-intensive but are particularly useful for unknown or

### Acknowledgements

Washington University in St. Louis SCHOOL OF MEDICINE

### Handley Lab

Scott Handley Leran Wang Kathie Mihindukulasuriya Lindsay Droit Dhoha Abid Megan Johnson Martina Moore

Dave Wang

### <u>Center for Genome Sciences</u>

Jessica Hoisington-Lopez MariaLynn Crosby





### Kwon Lab

Doug Kwon Joseph Elsherbini Sarah Eisa Cameron Reitan

